\(\int \frac {\sqrt {d \tan (e+f x)}}{a+a \tan (e+f x)} \, dx\) [360]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 89 \[ \int \frac {\sqrt {d \tan (e+f x)}}{a+a \tan (e+f x)} \, dx=-\frac {\sqrt {d} \arctan \left (\frac {\sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{a f}-\frac {\sqrt {d} \arctan \left (\frac {\sqrt {d}-\sqrt {d} \tan (e+f x)}{\sqrt {2} \sqrt {d \tan (e+f x)}}\right )}{\sqrt {2} a f} \]

[Out]

-arctan((d*tan(f*x+e))^(1/2)/d^(1/2))*d^(1/2)/a/f-1/2*arctan(1/2*(d^(1/2)-d^(1/2)*tan(f*x+e))*2^(1/2)/(d*tan(f
*x+e))^(1/2))*d^(1/2)/a/f*2^(1/2)

Rubi [A] (verified)

Time = 0.22 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3653, 3613, 211, 3715, 65} \[ \int \frac {\sqrt {d \tan (e+f x)}}{a+a \tan (e+f x)} \, dx=-\frac {\sqrt {d} \arctan \left (\frac {\sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{a f}-\frac {\sqrt {d} \arctan \left (\frac {\sqrt {d}-\sqrt {d} \tan (e+f x)}{\sqrt {2} \sqrt {d \tan (e+f x)}}\right )}{\sqrt {2} a f} \]

[In]

Int[Sqrt[d*Tan[e + f*x]]/(a + a*Tan[e + f*x]),x]

[Out]

-((Sqrt[d]*ArcTan[Sqrt[d*Tan[e + f*x]]/Sqrt[d]])/(a*f)) - (Sqrt[d]*ArcTan[(Sqrt[d] - Sqrt[d]*Tan[e + f*x])/(Sq
rt[2]*Sqrt[d*Tan[e + f*x]])])/(Sqrt[2]*a*f)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3613

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(d^2/f),
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 3653

Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(
c^2 + d^2), Int[Simp[a*c + b*d + (b*c - a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Dist[d*((b*c
- a*d)/(c^2 + d^2)), Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; FreeQ
[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {a d+a d \tan (e+f x)}{\sqrt {d \tan (e+f x)}} \, dx}{2 a^2}-\frac {1}{2} d \int \frac {1+\tan ^2(e+f x)}{\sqrt {d \tan (e+f x)} (a+a \tan (e+f x))} \, dx \\ & = -\frac {d \text {Subst}\left (\int \frac {1}{\sqrt {d x} (a+a x)} \, dx,x,\tan (e+f x)\right )}{2 f}-\frac {d^2 \text {Subst}\left (\int \frac {1}{2 a^2 d^2+d x^2} \, dx,x,\frac {a d-a d \tan (e+f x)}{\sqrt {d \tan (e+f x)}}\right )}{f} \\ & = -\frac {\sqrt {d} \arctan \left (\frac {\sqrt {d}-\sqrt {d} \tan (e+f x)}{\sqrt {2} \sqrt {d \tan (e+f x)}}\right )}{\sqrt {2} a f}-\frac {\text {Subst}\left (\int \frac {1}{a+\frac {a x^2}{d}} \, dx,x,\sqrt {d \tan (e+f x)}\right )}{f} \\ & = -\frac {\sqrt {d} \arctan \left (\frac {\sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )}{a f}-\frac {\sqrt {d} \arctan \left (\frac {\sqrt {d}-\sqrt {d} \tan (e+f x)}{\sqrt {2} \sqrt {d \tan (e+f x)}}\right )}{\sqrt {2} a f} \\ \end{align*}

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(283\) vs. \(2(89)=178\).

Time = 0.37 (sec) , antiderivative size = 283, normalized size of antiderivative = 3.18 \[ \int \frac {\sqrt {d \tan (e+f x)}}{a+a \tan (e+f x)} \, dx=-\frac {8 d^{3/2} \arctan \left (\frac {\sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )+4 \left (-d^2\right )^{3/4} \arctan \left (\frac {\sqrt {d \tan (e+f x)}}{\sqrt [4]{-d^2}}\right )+2 \sqrt {2} d^{3/2} \arctan \left (1-\frac {\sqrt {2} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )-2 \sqrt {2} d^{3/2} \arctan \left (1+\frac {\sqrt {2} \sqrt {d \tan (e+f x)}}{\sqrt {d}}\right )-4 \left (-d^2\right )^{3/4} \text {arctanh}\left (\frac {\sqrt {d \tan (e+f x)}}{\sqrt [4]{-d^2}}\right )+\sqrt {2} d^{3/2} \log \left (\sqrt {d}+\sqrt {d} \tan (e+f x)-\sqrt {2} \sqrt {d \tan (e+f x)}\right )-\sqrt {2} d^{3/2} \log \left (\sqrt {d}+\sqrt {d} \tan (e+f x)+\sqrt {2} \sqrt {d \tan (e+f x)}\right )}{8 a d f} \]

[In]

Integrate[Sqrt[d*Tan[e + f*x]]/(a + a*Tan[e + f*x]),x]

[Out]

-1/8*(8*d^(3/2)*ArcTan[Sqrt[d*Tan[e + f*x]]/Sqrt[d]] + 4*(-d^2)^(3/4)*ArcTan[Sqrt[d*Tan[e + f*x]]/(-d^2)^(1/4)
] + 2*Sqrt[2]*d^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[d*Tan[e + f*x]])/Sqrt[d]] - 2*Sqrt[2]*d^(3/2)*ArcTan[1 + (Sqrt[
2]*Sqrt[d*Tan[e + f*x]])/Sqrt[d]] - 4*(-d^2)^(3/4)*ArcTanh[Sqrt[d*Tan[e + f*x]]/(-d^2)^(1/4)] + Sqrt[2]*d^(3/2
)*Log[Sqrt[d] + Sqrt[d]*Tan[e + f*x] - Sqrt[2]*Sqrt[d*Tan[e + f*x]]] - Sqrt[2]*d^(3/2)*Log[Sqrt[d] + Sqrt[d]*T
an[e + f*x] + Sqrt[2]*Sqrt[d*Tan[e + f*x]]])/(a*d*f)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(303\) vs. \(2(72)=144\).

Time = 0.94 (sec) , antiderivative size = 304, normalized size of antiderivative = 3.42

method result size
derivativedivides \(\frac {2 d^{2} \left (-\frac {\arctan \left (\frac {\sqrt {d \tan \left (f x +e \right )}}{\sqrt {d}}\right )}{2 d^{\frac {3}{2}}}+\frac {\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d}+\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}}{2 d}\right )}{f a}\) \(304\)
default \(\frac {2 d^{2} \left (-\frac {\arctan \left (\frac {\sqrt {d \tan \left (f x +e \right )}}{\sqrt {d}}\right )}{2 d^{\frac {3}{2}}}+\frac {\frac {\left (d^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 d}+\frac {\sqrt {2}\, \left (\ln \left (\frac {d \tan \left (f x +e \right )-\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}{d \tan \left (f x +e \right )+\left (d^{2}\right )^{\frac {1}{4}} \sqrt {d \tan \left (f x +e \right )}\, \sqrt {2}+\sqrt {d^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {d \tan \left (f x +e \right )}}{\left (d^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (d^{2}\right )^{\frac {1}{4}}}}{2 d}\right )}{f a}\) \(304\)

[In]

int((d*tan(f*x+e))^(1/2)/(a+a*tan(f*x+e)),x,method=_RETURNVERBOSE)

[Out]

2/f/a*d^2*(-1/2/d^(3/2)*arctan((d*tan(f*x+e))^(1/2)/d^(1/2))+1/2/d*(1/8/d*(d^2)^(1/4)*2^(1/2)*(ln((d*tan(f*x+e
)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)
+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e
))^(1/2)+1))+1/8/(d^2)^(1/4)*2^(1/2)*(ln((d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2))/(
d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+2*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e)
)^(1/2)+1)-2*arctan(-2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1))))

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 211, normalized size of antiderivative = 2.37 \[ \int \frac {\sqrt {d \tan (e+f x)}}{a+a \tan (e+f x)} \, dx=\left [\frac {\sqrt {2} \sqrt {-d} \log \left (\frac {d \tan \left (f x + e\right )^{2} + 2 \, \sqrt {d \tan \left (f x + e\right )} {\left (\sqrt {2} \tan \left (f x + e\right ) - \sqrt {2}\right )} \sqrt {-d} - 4 \, d \tan \left (f x + e\right ) + d}{\tan \left (f x + e\right )^{2} + 1}\right ) + 2 \, \sqrt {-d} \log \left (\frac {d \tan \left (f x + e\right ) - 2 \, \sqrt {d \tan \left (f x + e\right )} \sqrt {-d} - d}{\tan \left (f x + e\right ) + 1}\right )}{4 \, a f}, \frac {\sqrt {2} \sqrt {d} \arctan \left (\frac {\sqrt {d \tan \left (f x + e\right )} {\left (\sqrt {2} \tan \left (f x + e\right ) - \sqrt {2}\right )}}{2 \, \sqrt {d} \tan \left (f x + e\right )}\right ) - 2 \, \sqrt {d} \arctan \left (\frac {\sqrt {d \tan \left (f x + e\right )}}{\sqrt {d}}\right )}{2 \, a f}\right ] \]

[In]

integrate((d*tan(f*x+e))^(1/2)/(a+a*tan(f*x+e)),x, algorithm="fricas")

[Out]

[1/4*(sqrt(2)*sqrt(-d)*log((d*tan(f*x + e)^2 + 2*sqrt(d*tan(f*x + e))*(sqrt(2)*tan(f*x + e) - sqrt(2))*sqrt(-d
) - 4*d*tan(f*x + e) + d)/(tan(f*x + e)^2 + 1)) + 2*sqrt(-d)*log((d*tan(f*x + e) - 2*sqrt(d*tan(f*x + e))*sqrt
(-d) - d)/(tan(f*x + e) + 1)))/(a*f), 1/2*(sqrt(2)*sqrt(d)*arctan(1/2*sqrt(d*tan(f*x + e))*(sqrt(2)*tan(f*x +
e) - sqrt(2))/(sqrt(d)*tan(f*x + e))) - 2*sqrt(d)*arctan(sqrt(d*tan(f*x + e))/sqrt(d)))/(a*f)]

Sympy [F]

\[ \int \frac {\sqrt {d \tan (e+f x)}}{a+a \tan (e+f x)} \, dx=\frac {\int \frac {\sqrt {d \tan {\left (e + f x \right )}}}{\tan {\left (e + f x \right )} + 1}\, dx}{a} \]

[In]

integrate((d*tan(f*x+e))**(1/2)/(a+a*tan(f*x+e)),x)

[Out]

Integral(sqrt(d*tan(e + f*x))/(tan(e + f*x) + 1), x)/a

Maxima [A] (verification not implemented)

none

Time = 0.35 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.26 \[ \int \frac {\sqrt {d \tan (e+f x)}}{a+a \tan (e+f x)} \, dx=\frac {\frac {d^{2} {\left (\frac {\sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}} + \frac {\sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt {d}}\right )}{\sqrt {d}}\right )}}{a} - \frac {2 \, d^{\frac {3}{2}} \arctan \left (\frac {\sqrt {d \tan \left (f x + e\right )}}{\sqrt {d}}\right )}{a}}{2 \, d f} \]

[In]

integrate((d*tan(f*x+e))^(1/2)/(a+a*tan(f*x+e)),x, algorithm="maxima")

[Out]

1/2*(d^2*(sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d) + sqrt(2)*arc
tan(-1/2*sqrt(2)*(sqrt(2)*sqrt(d) - 2*sqrt(d*tan(f*x + e)))/sqrt(d))/sqrt(d))/a - 2*d^(3/2)*arctan(sqrt(d*tan(
f*x + e))/sqrt(d))/a)/(d*f)

Giac [F]

\[ \int \frac {\sqrt {d \tan (e+f x)}}{a+a \tan (e+f x)} \, dx=\int { \frac {\sqrt {d \tan \left (f x + e\right )}}{a \tan \left (f x + e\right ) + a} \,d x } \]

[In]

integrate((d*tan(f*x+e))^(1/2)/(a+a*tan(f*x+e)),x, algorithm="giac")

[Out]

integrate(sqrt(d*tan(f*x + e))/(a*tan(f*x + e) + a), x)

Mupad [B] (verification not implemented)

Time = 2.89 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.16 \[ \int \frac {\sqrt {d \tan (e+f x)}}{a+a \tan (e+f x)} \, dx=\frac {\sqrt {2}\,\sqrt {d}\,\left (2\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{2\,\sqrt {d}}\right )+2\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{2\,\sqrt {d}}+\frac {\sqrt {2}\,{\left (d\,\mathrm {tan}\left (e+f\,x\right )\right )}^{3/2}}{2\,d^{3/2}}\right )\right )}{4\,a\,f}-\frac {\sqrt {d}\,\mathrm {atan}\left (\frac {\sqrt {d\,\mathrm {tan}\left (e+f\,x\right )}}{\sqrt {d}}\right )}{a\,f} \]

[In]

int((d*tan(e + f*x))^(1/2)/(a + a*tan(e + f*x)),x)

[Out]

(2^(1/2)*d^(1/2)*(2*atan((2^(1/2)*(d*tan(e + f*x))^(1/2))/(2*d^(1/2))) + 2*atan((2^(1/2)*(d*tan(e + f*x))^(1/2
))/(2*d^(1/2)) + (2^(1/2)*(d*tan(e + f*x))^(3/2))/(2*d^(3/2)))))/(4*a*f) - (d^(1/2)*atan((d*tan(e + f*x))^(1/2
)/d^(1/2)))/(a*f)